§ 250.1606

be equipped with either remote-operated manual or automatic-shutdown devices. Diesel engines that are not continuously attended must be equipped with automatic shutdown devices.

§250.1606 Control of wells.

The lessee shall take necessary precautions to keep its wells under control at all times. Operations shall be conducted in a safe and workmanlike manner. The lessee shall utilize the best available and safest drilling technologies and state-of-the-art methods to evaluate and minimize the potential for a well to flow or kick. The lessee shall utilize personnel who are trained and competent and shall utilize and maintain equipment and materials necessary to assure the safety and protection of personnel, equipment, natural resources, and the environment.

§ 250.1607 Field rules.

When geological and engineering information in a field enables a District Manager to determine specific operating requirements, field rules may be established for drilling, well completion, or well workover on the District Manager's initiative or in response to a request from a lessee: such rules may modify the specific requirements of this subpart. After field rules have been established, operations in the field shall be conducted in accordance with such rules and other requirements of this subpart. Field rules may be amended or canceled for cause at any time upon the initiative of the District Manager or upon the request of a les-

§ 250.1608 Well casing and cementing.

- (a) General requirements. (1) For the purpose of this subpart, the several casing strings in order of normal installation are:
 - (i) Drive or structural,
 - (ii) Conductor,
 - (iii) Cap rock casing,
- (iv) Bobtail cap rock casing (required when the cap rock casing does not penetrate into the cap rock),
- (v) Second cap rock casing (brine wells), and
 - (vi) Production liner.

- (2) The lessee shall case and cement all wells with a sufficient number of strings of casing cemented in a manner necessary to prevent release of fluids from any stratum through the wellbore (directly or indirectly) into the sea, protect freshwater aquifers from contamination, support unconsolidated sediments, and otherwise provide a means of control of the formation pressures and fluids. Cement composition, placement techniques, and waiting time shall be designed and conducted so that the cement in place behind the bottom 500 feet of casing or total length of annular cement fill, if less, attains a minimum compressive strength of 160 pounds per square inch
- (3) The lessee shall install casing designed to withstand the anticipated stresses imposed by tensile, compressive, and buckling loads; burst and collapse pressures; thermal effects; and combinations thereof. Safety factors in the drilling and casing program designs shall be of sufficient magnitude to provide well control during drilling and to assure safe operations for the life of the well
- (4) In cases where cement has filled the annular space back to the mud line, the cement may be washed out or displaced to a depth not exceeding the depth of the structural casing shoe to facilitate casing removal upon well abandonment if the District Manager determines that subsurface protection against damage to freshwater aquifers and against damage caused by adverse loads, pressures, and fluid flows is not jeopardized.
- (5) If there are indications of inadequate cementing (such as lost returns, cement channeling, or mechanical failure of equipment), the lessee shall evaluate the adequacy of the cementing operations by pressure testing the casing shoe. If the test indicates inadequate cementing, the lessee shall initiate remedial action as approved by the District Manager. For cap rock casing, the test for adequacy of cementing shall be the pressure testing of the annulus between the cap rock and the conductor casings. The pressure shall

not exceed 70 percent of the burst pressure of the conductor casing or 70 percent of the collapse pressure of the cap rock casing.

- (b) Drive or structural casing. This casing shall be set by driving, jetting, or drilling to a minimum depth of 100 feet below the mud line or such other depth, as may be required or approved by the District Manager, in order to support unconsolidated deposits and to provide hole stability for initial drilling operations. If this portion of the hole is drilled, a quantity of cement sufficient to fill the annular space back to the mud line shall be used.
- (c) Conductor and cap rock casing setting and cementing requirements. (1) Conductor and cap rock casing design and setting depths shall be based upon relevant engineering and geologic factors including the presence or absence of hydrocarbons, potential hazards, and water depths. The proposed casing setting depths may be varied, subject to District Manager approval, to permit the casing to be set in a competent formation or through formations determined desirable to be isolated from the wellbore by casing for safer drilling operations. However, the conductor casing shall be set immediately prior to drilling into formations known to contain oil or gas or, if unknown, upon encountering such formations. Cap rock casing shall be set and cemented through formations known to contain oil or gas or, if unknown, upon encountering such formations. Upon encountering unexpected formation pressures, the lessee shall submit a revised casing program to the District Manager for approval.
- (2) Conductor casing shall be cemented with a quantity of cement that fills the calculated annular space back to the mud line. Cement fill shall be verified by the observation of cement returns. In the event that observation of cement returns is not feasible, additional quantities of cement shall be used to assure fill to the mud line.
- (3) Cap rock casing shall be cemented with a quantity of cement that fills the calculated annular space to at least 200 feet inside the conductor casing. When geologic conditions such as near surface fractures and faulting exist, cap rock casing shall be cemented with a

- quantity of cement that fills the calculated annular space to the mud line, unless otherwise approved by the District Manager. In brine wells, the second cap rock casing shall be cemented with a quantity of cement that fills the calculated annular space to at least 200 feet above the setting depth of the first cap rock casing.
- (d) Bobtail cap rock casing setting and cementing requirements. (1) Bobtail cap rock casing shall be set on or just in cap rock and lapped a minimum of 100 feet into the previous casing string.
- (2) Sufficient cement shall be used to fill the annular space to the top of the bobtail cap rock casing.
- (e) Production liner setting and cementing requirements. (1) Production liners for sulphur wells and bleedwells shall be set in cap rock at or above the bottom of the open hole (hole that is open in cap rock, below the bottom of the cap rock casing) and lapped into the previous casing string or to the surface. For brine wells, the liner shall be set in salt and lapped into the previous casing string or to the surface.
- (2) The production liner is not required to be cemented unless the cap rock contains oil or gas. If the cap rock contains oil or gas, sufficient cement shall be used to fill the annular space to the top of the production liner.

§ 250.1609 Pressure testing of casing.

(a) Prior to drilling the plug after cementing, all casing strings, except the drive or structural casing, shall be pressure tested. The conductor casing shall be tested to at least 200 psi. All casing strings below the conductor casing shall be tested to 500 psi or 0.22 psi/ ft, whichever is greater. (When oil or gas is not present in the cap rock, the production liner need not be cemented in place; thus, it would not be subject to pressure testing.) If the pressure declines more than 10 percent in 30 minutes or if there is another indication of a leak, the casing shall be recemented, repaired, or an additional casing string run and the casing tested again. The above procedures shall be repeated until a satisfactory test is obtained. The time, conditions of testing, and results of all casing pressure tests shall be recorded in the driller's report.